Ваши преимущества

√ Вы сами выбираете эксперта

√ Цены ниже на 30%

√ Можно заказывать без предоплаты

√ Сотни квалифицированных экспертов


Особенности формирования социальных страт во время пандемии 2020-2022
Основные события, вызвавшие эмоциональные отклики россиян в 2024 году
Правила переоформления студенческих работ
Требования к оформлению студенческих работ
Онлайн-калькулятор по экономике
ГлавнаяПрикладная математика

6 задач по теории вероятности

ДисциплинаПрикладная математика
ВУЗТомск

Описание

Задача 1

Условие задачи:
Бросают две игральные кости. Найти вероятность того, что произведение выпавших очков не менее 12.
Задача 2
Условие задачи:
В первой урне находится 2 красных шара и 8 синих, во второй - 2 красных шаров и 3 синих. Из каждой урны извлекают по одному шару. Найти вероятность того, что среди двух извлеченных шаров окажется: а) два красных шара; 6) один красный шар; в) хотя бы один красный шар; г) два синих шара.
Задача 3
Условие задачи:
В эксплуатации находятся 5 однотипных изделий. Для каждого изделия верoятнocть безотказной работы в течение заданного времени равна 0,6. Найти вероятность того, что заданное время проработают: а) ровно 3 изделий; 6) не менее 3 изделий.
Задача 4
Условие задачи:
Задан закон распределения дискретной случайной величины X. Найти интегральную функцию распределения F(x), математическое ожидание М(х), дисперсию D(x) и среднее квадратическое отклонение дискретной случайной величины X.
Xi 0 2 4 6 8
Pi 0.1 0.3 0.2 0.3 0.1
Задача 5
Условие задачи:
При обследовании более 106 объектов установлено, что значения некоторого размера Х всех объектов попали в интервал (15;20). Есть основания считать, что случайная величина X имеет нормальное распределение. Найти математическое ожидание а = М(Х) среднее квадратическое отклонение и вероятность попадания значения размера X в интервал (17;19).
Задача 6
Условие задачи:
Получены 100 статистических значений непрерывной случайной величины X и выполнена группировка этих значений по интервалам. В условиях задачи приведены границы интервалов хiн, хiв и соответствующие частоты ni. Найти статистические оценки математического ожидания M[X), дисперсии D(X) и среднего квадратического отклонения (X) построить гистограмму относительных частот и график теоретической плотности распределения; выполнить проверку гипотезы о виде распределения по критерию Пирсона.
хiн 4 6 8 10 12 14 16
хiв 6 8 10 12 14 16 18
ni
Шаг №1. Делаете заказ
Шаг №2. Выбираете автора
Шаг №3. Получаете готовую работу
Отзывы
21-10-2020 21:00:23
Хороший исполнитель. По заказу 743 выполнено качественно и в срок.
26-06-2020 20:21:32
Благодарю за сотрудничество
26-06-2020 19:02:42
Хороший исполнитель, работы делаются вовремя + качественное и подробное решение
26-06-2020 19:02:39
Хороший исполнитель, работы делаются вовремя + качественное и подробное решение
08-05-2020 08:21:39
Сроки выдерживает, цены вменяемые.
21-05-2019 10:15:27
Быстро и качественно, рекомендую)
20-03-2019 12:15:15
Большое спасибо! Работа выполнена на отлично и в срок. Рекомендую.
26-02-2019 18:21:56
Спасибо большое, работа выполнена качественно и в срок
31-01-2019 17:06:10
Добавлен положительный отзыв
27-01-2019 19:07:38
Прекрасный исполнитель!Благодарю Елену за оперативную помощь,отзывчивость и общительность.