Статистика государственных финансов
Правила переоформления студенческих работ
Требования к оформлению студенческих работ

Общая теория связи

ГлавнаяЭлектронная техника, радиотехника и связьСети связи и системы коммутации
ДисциплинаСети связи и системы коммутации
ВУЗВГУ

Содержание

В передающем устройстве (ПДУ) системы на основе аналого-цифрового преобразования (АЦП) сообщение преобразуется в первичный цифровой сигнал импульсно-кодовой модуляции (ИКМ), который модулирует один из информационных параметров высокочастотного гармонического переносчика. В результате формируется канальный сигнал S(t) дискретной амплитудной (ДАМ), дискретной частотной (ДЧМ) или дискретной относительной фазовой модуляции (ДОФМ).
Сигнал дискретной модуляции передается по узкополосному гауссовскому непрерывному каналу связи (НКС), в котором действует аддитивная помеха N(t).
В приемном устройстве (ПРУ) системы принятая смесь сигнала и помехи Z(t)=S(t)+N(t) подвергается при детектировании либо когерентной (КП), либо некогерентной (НП) обработке с последующим поэлементным принятием решения методом однократного отсчета. Прием сигналов ДОФМ осуществляется либо методом сравнения фаз (СФ), либо методом сравнения полярностей (СП).
Восстановление (оценка) переданного сообщения по принятому с искажениями сигналу ИКМ осуществляется на основе цифро-аналогового преобразования (ЦАП) с последующей низкочастотной фильтрацией (ФНЧ).
В курсовой работе требуется выполнить следующее.
1. Изобразить структурную схему системы электросвязи и пояснить назначение ее отдельных элементов;
2. По заданной функции корреляции исходного сообщения:
а) рассчитать интервал корреляции, спектр плотности мощности и начальную энергетическую ширину спектра сообщения;
б) построить в масштабе графики функции корреляции и спектра плотности мощности; отметить на них найденные в пункте "а" параметры.
3. Считая, что исходное сообщение воздействует на идеальный фильтр нижних частот (ИФНЧ) с единичным коэффициентом передачи и полосой пропускания, равной начальной энергетической ширине спектра сообщения:
а) рассчитать среднюю квадратическую погрешность фильтрации (СКПФ) сообщения, среднюю мощность отклика ИФНЧ, частоту и интервал временной дискретизации отклика ИФНЧ;
б) качественно, с учетом найденных в пункте "а", параметров изобразить сигналы и спектры на входе и выходе дискретизатора АЦП.
4. Полагая, что последовательность дискретных отсчетов на выходе дискретизатора далее квантуется по уровню с равномерной шкалой квантования:
а) рассчитать интервал квантования, пороги и уровни квантования, среднюю квадратическую погрешность квантования (СКПК);
б) построить в масштабе характеристику квантования.
5. Рассматривая отклик квантователя как случайный дискретный сигнал с независимыми значениями на входе L-ичного дискретного канала связи (ДКС):
а) рассчитать закон и функцию распределения вероятностей квантованного сигнала, а также энтропию, производительность и избыточность L-ичного дискретного источника;
б) построить в масштабе графики рассчитанных закона и функции распределения вероятностей.
6. Закодировать значения -ичного дискретного сигнала двоичным блочным примитивным кодом, выписать все кодовые комбинации кода и построить таблицу кодовых расстояний кода; кроме того:
а) рассчитать априорные вероятности передачи по двоичному ДКС символов нуля и единицы, начальную ширину спектра сигнала ИКМ;
б) изобразить качественно на одном графике сигналы в четырех сечениях АЦП: вход АЦП, выход дискретизатора, выход квантователя, выход АЦП.
7. Полагая, что для передачи ИКМ сигнала по непрерывному каналу связи (НКС) используется гармонический переносчик:
а) рассчитать нормированный к амплитуде переносчика спектр модулированного сигнала и его начальную ширину спектра;
б) построить в масштабе график нормированного спектра сигнала дискретной модуляции и отметить на нем найденную ширину спектра.
8. Рассматривая НКС как аддитивный гауссовский канал с ограниченной полосой частот, равной ширине спектра сигнала дискретной модуляции, и заданными спектральной плотностью мощности помехи и отношением сигнал-шум:
а) рассчитать приходящиеся в среднем на один двоичный символ мощность и амплитуду модулированного сигнала, дисперсию (мощность) аддитивной помехи в полосе частот сигнала, пропускную способность НКС;
б) построить в масштабе четыре графика функций плотности вероятностей (ФПВ) мгновенных значений и огибающих узкополосной гауссовской помехи (УГП) и суммы гармонического сигнала с УГП.
9. С учетом заданного вида приема (детектирования) сигнала дискретной модуляции:
а) рассчитать среднюю вероятность ошибки в двоичном ДКС, скорость передачи информации по двоичному симметричному ДКС, показатель эффективности передачи сигнала дискретной модуляции по НКС;
б) изобразить схему приемника сигналов дискретной модуляции и коротко описать принцип его работы, пояснить случаи, когда он выносит ошибочные решения.
10. Рассматривая отклик декодера ПРУ как случайный дискретный сигнал на выходе L-ичного ДКС:
а) рассчитать распределение вероятностей дискретного сигнала на выходе декодера, скорость передачи информации по -ичного ДКС, относительные потери в скорости передачи информации по -ичного ДКС;
б) построить в масштабе график закона распределения вероятностей отклика декодера и сравнить его с законом распределения вероятностей отклика квантователя.
11. Полагая ФНЧ на выходе ЦАП приемника идеальным с полосой пропускания, равной начальной энергетической ширине спектра исходного сообщения:
а) рассчитать дисперсию случайных импульсов шума передачи на выходе интерполятора ЦАП, среднюю квадратическую погрешность шума передачи (СКПП), суммарную начальную СКП восстановления непрерывного сообщения (СКПП), относительную СКП (ОСКП);
б) качественно изобразить сигналы на выходе декодера и интерполятора ЦАП, а также восстановленного сообщения на выходе системы электросвязи.
12. Ввиду того, что выбор начальной энергетической ширины спектра исходного сообщения не приводит к минимуму ОСКП, решить оптимизационную задачу: с помощью ЭВМ определить оптимальную энергетическую ширину спектра сообщения, доставляющую минимум относительной суммарной СКП его восстановления.
Используя пакеты прикладных программ (например, Микрокап или Мультисим), смоделировать упрощенный вариант системы связи и привести результаты моделирования.


Исходные данные
Исходные данные для расчетов приведены в табл. 1, где PA=s_a^2 – мощность (дисперсия) сообщения; b– показатель затухания функции корреляции; – число уровней квантования; – постоянная энергетического спектра шума НКС; h^2 – отношение сигнал-шум (ОСШ) по мощности на входе детектора.